Click here to go to the simulation.

First some basic definitions:

\begin{align*} &\mathbf F=\left(F_x,F_y\right)=-\nabla U=-\mathbf i\,\frac{\partial U}{\partial x}-\mathbf j\,\frac{\partial U}{\partial y}=-\mathbf u_r\,\frac{\partial U}{\partial r}-\mathbf u_{\theta}\,\frac{1}{r}\frac{\partial U}{\partial \theta}\\ & \text{div} \,\mathbf F=\nabla\cdot\mathbf F=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}=\frac{1}{r}\frac{\partial (rF_{r})}{\partial r}+\frac{1}{r}\frac{\partial F_{\theta}}{\partial_{\theta}}\\ &\text{curl}\, \mathbf F=\nabla \times \mathbf F=\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\mathbf k=\frac{1}{r}\left[\frac{\partial (rF_{\theta})}{\partial r}-\frac{\partial F_r}{\partial_{\theta}}\right]\mathbf k \end{align*}

Next, here is a list of all the vector fields in this simulation:

Click here to go to the simulation.


Note: This is an adaptation of the open-source code VecDemo.java written by Paul Falstad (www.falstad.com).