--->
SciMS - The University of Queensland

2D simulation - Functions


First some basic definitions:

\begin{align*} & r = \sqrt{x^2+y^2}\\ &\mathbf F=\left(F_1,F_2\right)=\nabla U=\mathbf i\,\frac{\partial U}{\partial x}+\mathbf j\,\frac{\partial U}{\partial y}=\mathbf u_r\,\frac{\partial U}{\partial r}+\mathbf u_{\theta}\,\frac{1}{r}\frac{\partial U}{\partial \theta}\\ & \text{div} \,\mathbf F=\nabla\cdot\mathbf F=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}=\frac{1}{r}\frac{\partial (rF_{1})}{\partial r}+\frac{1}{r}\frac{\partial F_{2}}{\partial_{\theta}}\\ &\text{curl}\, \mathbf F=\nabla \times \mathbf F=\left(\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)\mathbf k=\frac{1}{r}\left[\frac{\partial (rF_{2})}{\partial r}-\frac{\partial F_1}{\partial_{\theta}}\right]\mathbf k \end{align*}

Next, here is a list of all the vector fields in this simulation:


References

[1] Marsden, J. E.; Tromba. A. J. (2012). Vector Calculus. 6th ed. USA: W. H. Freeman and Company.

[2] Trench, W. F. (2013). Elementary Differential Equations with Boundary Value Problems. Books and Monographs.