SCHOOL OF MATHEMATICS AND PHYSICS

Line integrals of vector fields

(1) Consider the velocity field $\mathbf{v} = x\mathbf{i} - y\mathbf{j}$. Evaluate the line integral $\int_C \mathbf{v} \cdot \mathbf{n} \, dS$ directly to calculate the net outward flux from a square with vertices (0,0), (2,0), (2,2), (0,2). Interpret your results physically knowing that the velocity field is a simple model of fluid flow near a wall $(y \ge 0)$.

What can you say about mass conservation?

SciMS online simulations

Click on the links below or type the URLs into your browser's address bar.

- Velocity fields simulation:

http://teaching.smp.uq.edu.au/scims/Adv_calculus/Velocity_field.html

- Line integrals simulation:

https://teaching.smp.uq.edu.au/scims/Adv_calculus/Int_vector_field.html

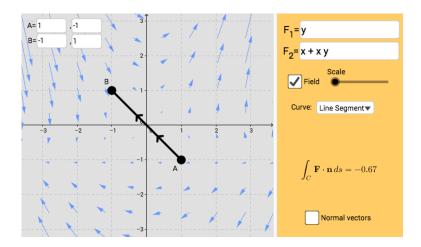


Figure 1: Advanced Calculus→Line integrals of vector fields

- (2) Consider the vector field $\mathbf{F} = (x y)\mathbf{i} + (x xy)\mathbf{j}$.
 - a. Use the divergence theorem to explain why the flux out of any circle centred at the line x=1 is zero.
 - b. Use Stokes theorem to explain why the circulation around any circle centred at the line y=2 is zero.
 - c. Find the circulation around a circle of unit radius centred at $x=0,\,y=1.$
 - d. Is \boldsymbol{F} is conservative?

SciMS online simulations

Click on the link below or type the URLs into your browser's address bar:

https://teaching.smp.uq.edu.au/scims/Adv_calculus/Int_vector_field.html