SCHOOL OF MATHEMATICS AND PHYSICS

Euler's method

Problems

1. Use Euler's method with step size 0.5 to compute the approximate y-values $y_{1}, y_{2}, y_{3}, y_{4}$ of the solution of the initial-value problem $y^{\prime}=y-2 x, y(1)=0$.
2. Use Euler's method with step size 0.2 to estimate $y(1)$, where $y(x)$ is the solution of the initial-value problem $y^{\prime}=x y-x^{2}, y(0)=1$.
3. Use Euler's method with step size 0.1 to estimate $y(0.5)$, where $y(x)$ is the solution of the initial-value problem $y^{\prime}=y+x y, y(0)=1$.
4. (a) Use Euler's method with step size 0.2 to estimate $y(0.4)$, where $y(x)$ is the solution of the initial-value problem $y^{\prime}=x+y^{2}, y(0)=0$.
(b) Repeat part (a) with step size 0.1.

Use the following simulation to help you visualise and check your answers. Click on the link bellow to access:
https://teaching.smp.uq.edu.au/scims/Appl_analysis/Slope_fields.html

